The prediction of protein structures from sequences is an important task for function prediction, drug design, and related biological processes understanding. Recent advances have proved the power of language models (LMs) in processing the protein sequence databases, which inherit the advantages of attention networks and capture useful information in learning representations for proteins. The past two years have witnessed remarkable success in tertiary protein structure prediction (PSP), including evolution-based and single-sequence-based PSP. It seems that instead of using energy-based models and sampling procedures, protein language model (pLM)-based pipelines have emerged as mainstream paradigms in PSP. Despite the fruitful progress, the PSP community needs a systematic and up-to-date survey to help bridge the gap between LMs in the natural language processing (NLP) and PSP domains and introduce their methodologies, advancements and practical applications. To this end, in this paper, we first introduce the similarities between protein and human languages that allow LMs extended to pLMs, and applied to protein databases. Then, we systematically review recent advances in LMs and pLMs from the perspectives of network architectures, pre-training strategies, applications, and commonly-used protein databases. Next, different types of methods for PSP are discussed, particularly how the pLM-based architectures function in the process of protein folding. Finally, we identify challenges faced by the PSP community and foresee promising research directions along with the advances of pLMs. This survey aims to be a hands-on guide for researchers to understand PSP methods, develop pLMs and tackle challenging problems in this field for practical purposes.
translated by 谷歌翻译
In an era of countless content offerings, recommender systems alleviate information overload by providing users with personalized content suggestions. Due to the scarcity of explicit user feedback, modern recommender systems typically optimize for the same fixed combination of implicit feedback signals across all users. However, this approach disregards a growing body of work highlighting that (i) implicit signals can be used by users in diverse ways, signaling anything from satisfaction to active dislike, and (ii) different users communicate preferences in different ways. We propose applying the recent Interaction Grounded Learning (IGL) paradigm to address the challenge of learning representations of diverse user communication modalities. Rather than taking a fixed, human-designed reward function, IGL is able to learn personalized reward functions for different users and then optimize directly for the latent user satisfaction. We demonstrate the success of IGL with experiments using simulations as well as with real-world production traces.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Since the recent success of Vision Transformers (ViTs), explorations toward transformer-style architectures have triggered the resurgence of modern ConvNets. In this work, we explore the representation ability of DNNs through the lens of interaction complexities. We empirically show that interaction complexity is an overlooked but essential indicator for visual recognition. Accordingly, a new family of efficient ConvNets, named MogaNet, is presented to pursue informative context mining in pure ConvNet-based models, with preferable complexity-performance trade-offs. In MogaNet, interactions across multiple complexities are facilitated and contextualized by leveraging two specially designed aggregation blocks in both spatial and channel interaction spaces. Extensive studies are conducted on ImageNet classification, COCO object detection, and ADE20K semantic segmentation tasks. The results demonstrate that our MogaNet establishes new state-of-the-art over other popular methods in mainstream scenarios and all model scales. Typically, the lightweight MogaNet-T achieves 80.0\% top-1 accuracy with only 1.44G FLOPs using a refined training setup on ImageNet-1K, surpassing ParC-Net-S by 1.4\% accuracy but saving 59\% (2.04G) FLOPs.
translated by 谷歌翻译
Localizing anatomical landmarks are important tasks in medical image analysis. However, the landmarks to be localized often lack prominent visual features. Their locations are elusive and easily confused with the background, and thus precise localization highly depends on the context formed by their surrounding areas. In addition, the required precision is usually higher than segmentation and object detection tasks. Therefore, localization has its unique challenges different from segmentation or detection. In this paper, we propose a zoom-in attentive network (ZIAN) for anatomical landmark localization in ocular images. First, a coarse-to-fine, or "zoom-in" strategy is utilized to learn the contextualized features in different scales. Then, an attentive fusion module is adopted to aggregate multi-scale features, which consists of 1) a co-attention network with a multiple regions-of-interest (ROIs) scheme that learns complementary features from the multiple ROIs, 2) an attention-based fusion module which integrates the multi-ROIs features and non-ROI features. We evaluated ZIAN on two open challenge tasks, i.e., the fovea localization in fundus images and scleral spur localization in AS-OCT images. Experiments show that ZIAN achieves promising performances and outperforms state-of-the-art localization methods. The source code and trained models of ZIAN are available at https://github.com/leixiaofeng-astar/OMIA9-ZIAN.
translated by 谷歌翻译
如何设计有效,有效地折叠成所需结构的蛋白质序列?近年来,基于结构的蛋白质设计吸引了越来越多的关注。但是,由于缺乏表达性特征和自回归序列解码器,很少有方法可以同时提高准确性和效率。为了解决这些问题,我们提出了Prodesign,其中包含一种新型的残基特征和Prognn层,以一种单发的方式生成蛋白质序列,并改善恢复。实验表明,Prodesign可以在CATH 4.2上实现51.66 \%的回收率,而推理速度的速度比自动进取的竞争对手快70倍。此外,Prodesign分别在TS50和TS500上获得58.72 \%和60.42 \%的恢复分数。我们进行全面的消融研究,以揭示不同类型的蛋白质特征和模型设计的作用,从而激发了进一步的简化和改进。
translated by 谷歌翻译
深度学习表现出巨大的生成任务潜力。生成模型是可以根据某些隐含参数随机生成观测值的模型类。最近,扩散模型由于其发电能力而成为一类生成模型。如今,已经取得了巨大的成就。除了计算机视觉,语音产生,生物信息学和自然语言处理外,还需要在该领域探索更多应用。但是,扩散模型具有缓慢生成过程的自然缺点,从而导致许多增强的作品。该调查总结了扩散模型的领域。我们首先说明了两项具有里程碑意义的作品的主要问题-DDPM和DSM。然后,我们提供各种高级技术,以加快扩散模型 - 训练时间表,无训练采样,混合模型以及得分和扩散统一。关于现有模型,我们还根据特定的NFE提供了FID得分的基准和NLL。此外,引入了带有扩散模型的应用程序,包括计算机视觉,序列建模,音频和科学AI。最后,该领域以及局限性和进一步的方向都进行了摘要。
translated by 谷歌翻译
在多人2D姿势估计中,自下而上的方法同时预测了所有人的姿势,与自上而下的方法不同,不依赖于人类的检测。但是,与现有的自上而下方法相比,SOTA自下而上的方法的精度仍然不如较低。这是由于预测的人类姿势是根据不一致的人类边界箱中心进行回归的,并且缺乏人类规范的正常化,从而导致预测的人类姿势被遗漏了不准确和小规模的人。为了推动自下而上的姿势估计的信封,我们首先提出了多尺度训练,以增强网络以通过单尺度测试来处理规模变化,尤其是对于小规模的人。其次,我们介绍了双解剖中心(即头部和身体),在这里我们可以更准确,可靠地预测人类的姿势,尤其是对于小规模的人。此外,现有的自下而上方法采用多尺度测试来以多个额外的前向通行证的价格提高姿势估计的准确性,这削弱了自下而上方法的效率,与自上而下的方法相比,核心强度。相比之下,我们的多尺度训练使该模型能够预测单个前向通行证(即单尺度测试)中的高质量姿势。我们的方法在边界框的精度方面取得了38.4 \%的改进,在边界框上进行了39.1 \%的改进,以对可可的具有挑战性的小规模人群进行对现状(SOTA)的回忆(SOTA)。对于人类姿势AP评估,我们在带有单尺度测试的可可测试-DEV集中实现了新的SOTA(71.0 AP)。我们还在跨数据库评估中在Ochuman数据集上实现了最高的性能(40.3 AP)。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
联合检测(COSOD)旨在从多个图像发现重复的显着物体。两个主要挑战是组语义提取和噪声对象抑制。在本文中,我们提出了COSOD的统一两阶段的语义传播和对比度学习网络(主题网络)。主题网络可以分解为两个子结构,包括两个阶段的语义传播模块(TGSP),以应对第一个挑战和对比度学习模块(CLM),以应对第二个挑战。具体来说,对于TGSP,我们设计了一个图像到群体传播模块(IGP)来捕获组内相似特征的共识表示和小像素传播模块(GPP),以构建共识表示的相关性。对于CLM,随着阳性样品的设计,语义一致性得到了增强。通过设计负样品的设计,噪声对象被抑制。关于三个主要基准测试的实验结果表明,主题网络在各种评估指标方面都优于其他竞争对手。
translated by 谷歌翻译